Jikamatriks A dikali dengan bilangan r, maka r.A =(r.a ij). Contohnya: (4 x 2), maka matriks C berordo (3 x 2). Elemen C pada baris ke-2 dan kolom ke-2 atau a22 diperoleh dari jumlah hasil perkalian elemen-elemen baris ke-2 matriks A dan kolom ke-2 matriks B. Contohnya: Perlu diingat sifat perkalian dua matriks bahwa: Kelas 11 SMAMatriksInvers Matriks ordo 3x3Invers Matriks ordo 3x3MatriksALJABARMatematikaRekomendasi video solusi lainnya1055Invers dari matriks A = 2 -1 1 -1 1 1 3 -1 2 ad...0422Determinan matriks H = -3 1 1 0 2 -1 4 -3 0 adalah0518Jika matriks A = a 2 3 1 a 4 a 2 5 tidak mempunyai inv...Teks videodisini kita punya soal dimana kita harus menentukan nilai a sehingga matriks ordo 3 kali 3 ini tidak memiliki invers matriks yang tidak memiliki invers adalah matriks yang nilai determinannya adalah nol berarti kita tahu bahwa determinan dari matriks A haruslah 0 maka dari itu kita akan cari determinannya kita cari menggunakan rumus sebagai berikut yaitu kita tulis kembali A1 A2 A2 45 kemudian kita ambil dua yang paling kiri saja jadi A1 A2 A2 dan juga 345 nya tidak usah ikut kan nah kemudian Kemudian kita kali ke bawah seperti ini kita kali yang ini lalu ditambah dengan perkalian Yang ini ditambahkalian ini kemudian kita kurangi dengan perkalian Yang ini 2 * 4 * A disini adalah negatif 5 kali 1 Kali 2 negatif apabila kita mencari ordo 3 * 3, maka rumus terminalnya adalah sebagai berikut ini yang sudah kita gambar tadi Maka hasilnya adalah 5 a kuadrat 28 a ditambah 6 dikurangi dalam kurung 3 a kuadrat ditambah 8 a + 10 = 0, maka dari itu menjadi 2 kuadrat min 4 sama dengan nol atau apabila kita keluarkan duanya atau kita pindah empatnya ke sisi sebelah kanan maka 2 kuadrat = 4 di mana a kuadrat = 2 dan nilai a = plus minus akar 2 yang ada di opsi jawaban B Sekian dan sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul ax6r.
  • fgh68dgcr8.pages.dev/29
  • fgh68dgcr8.pages.dev/96
  • fgh68dgcr8.pages.dev/90
  • fgh68dgcr8.pages.dev/1
  • fgh68dgcr8.pages.dev/103
  • fgh68dgcr8.pages.dev/183
  • fgh68dgcr8.pages.dev/233
  • fgh68dgcr8.pages.dev/359
  • fgh68dgcr8.pages.dev/305
  • jika matriks a 1 2 3 4